
1 COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Tommaso Cucinotta
Bell Laboratories, Alcatel-Lucent

Dublin, Ireland

Priority InheritancePriority Inheritance
on Condition Variableson Condition Variables

2 COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

IntroductionIntroduction

In computing systems, it is convenient to
have tasks with different priorities
• to ensure low-latency and responsiveness
• I/O prioritized over computing
• Virtual Machines in cloud infrastructures

run at different priority/urgency level
– gold vs. bronze customers

LPLP

Time

HPHP

Event

LPLP

LP VMLP VM

Time

HPHP

Packet

LP VMLP VM

3 COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

IntroductionIntroduction

In computing systems, it is convenient to
have tasks with different priorities
• to ensure low-latency and responsiveness
• I/O prioritized over computing
• Virtual Machines in cloud infrastructures

run at different priority/urgency level
– gold vs. bronze customers

Interactions among tasks often
● use shared data structures in memory
● serialize access through a mutual

exclusion semaphore (mutex)

Shared Data
Structure D

Mutex M
Task A
Lock(M);
// modify D
Unlock(M);

Task C
Lock(M);
// modify D
Unlock(M);

LPLP

Time

HPHP

Event

LPLP

LP VMLP VM

Time

HPHP

Packet

LP VMLP VM

4 COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

IntroductionIntroduction

In computing systems, it is convenient to
have tasks with different priorities
• to ensure low-latency and responsiveness
• I/O prioritized over computing
• Virtual Machines in cloud infrastructures

run at different priority/urgency level
– gold vs. bronze customers

Interactions among tasks often
● use shared data structures in memory
● serialize access through a mutual

exclusion semaphore (mutex)

Mixing these two paradigms leads to
undesirable situations

Shared Data
Structure D

Mutex M
Task A
Lock(M);
// modify D
Unlock(M);

Task C
Lock(M);
// modify D
Unlock(M);

LPLP

Time

HPHP

Event

LPLP

LP VMLP VM

Time

HPHP

Packet

LP VMLP VM

5 COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Problem of Priority Inversion on MutexesProblem of Priority Inversion on Mutexes

Priority Inversion occurs when
● HP task A synchronizes with LP task C
● ... but a middle-priority task B defers execution of C, therefore A

6 COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Fixing Priority Inversion on MutexesFixing Priority Inversion on Mutexes

Priority Inheritance avoids the problem
• mutex owner inherits highest priority among tasks waiting for mutex

unlock (if higher than its own priority)

7 COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

More ProblemsMore Problems

More complex interactions require
● a condition variable (condvar)

– over which tasks may suspend waiting for
a condition, before the critical section CondVar CV

Shared
Queue Q

Mutex M

Task A
Lock(M);
// push in Q
Unlock(M);
Signal(CV);

Task C
Lock(M);
while (Q empty)
 Wait(CV, M);
// pop from Q
Unlock(M);

8 COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Background InformationBackground Information

More complex interactions require
● a condition variable (condvar)

– over which tasks may suspend waiting for
a condition, before the critical section

Priority Inversion still occurs when

CondVar CV

Shared
Queue Q

Mutex M

Task A
Lock(M);
// push in Q
Unlock(M);
Signal(CV);

Task C
Lock(M);
while (Q empty)
 Wait(CV, M);
// pop from Q
Unlock(M);

9 COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Related WorkRelated Work

Cornhill & Sha, '87 (International Workshop on Real-Time Ada Issues)
● Indefinite delay of HP tasks by LP tasks

Sha et al., '90
● Basic Priority Inheritance and Priority Ceiling Protocol

Later
● SRP, BWI, MBWI, FMLP, others...

Proposal: novel general solution
● for the problem of priority inversion
● in presence of arbitrary interactions among tasks
● based on mutexes and condition variables

Problem only marginally addressed in RT literature
● Limited to blocking RPC/RMI/Client-Server case

(condition helper implicitly known)

Task A Task C

10 COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Proposed Solution: PI-CVProposed Solution: PI-CV

Priority Inheritance on Condition Variable (PI-CV)
• declare which tasks may signal() on a condition

variable (the helpers)
• helpers automatically inherit highest priority among

wait()-ers
– (if higher than their own priority)

• inheritance cancelled on signal()
• transitive behaviour

– C inherits from B, which inherits from A
– integrate with classical priority inheritance mutexes

How to realize it ?
• add new syscall, e.g., to POSIX pthreads

– pthread_cond_helpers_add(condvar, thread)
– pthread_cond_helpers_del(condvar, thread)

• kernel modifications
– (futex code on Linux)

Wait()

Wait() Lock()

Wait()

11 COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

SimulationSimulation

PI-CV implemented in RTSim
• open-source simulator from SSSA

Simulated scenario
• Client-server interactions (see table)

Parameter Client1 Client2 Client3

Task period 676 683 687

Ovh lock/unlock 1 1 1

Ovh wait/signal 2 2 2

Ovh push/pop 2 2 2

Job comp 50 50 50

Server call 20 20 20

Exp duration 200000

Task 1 (prio 1)

Task 2 (prio 2)

Task 3 (prio 3)

Server (prio 4)

12 COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Simulation ResultsSimulation Results

Results
• 41% reduction of WCET for HP task

(as due to avoiding priority inversion)

Task 1 (prio 1)

Task 2 (prio 2)

Task 3 (prio 3)

Server (prio 4)

13 COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Current Status & Future WorkCurrent Status & Future Work

Future Work
• Real implementation on Linux (half-way)

• Use-case study with real application
• Schedulability analysis (theoretical)

On-going collaboration with Scuola Superiore Sant’Anna and
University of Trento

14 COPYRIGHT © 2013 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Q&AQ&A

Thanks for your attention!

Questions?

	Slide 1
	Problem Presentation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Problem Presentation
	Slide 8
	Slide 9
	Proposed Solution: PI-CV
	Simulation Results
	Slide 12
	Current Status & Future Work
	Slide 14

