
Work-Conserving Optimal Real-Time Scheduling on Multiprocessors∗

Kenji Funaoka, Shinpei Kato, and Nobuyuki Yamasaki
Graduate School of Science and Technology

Keio University, Yokohama, Japan
{funaoka,shinpei,yamasaki}@ny.ics.keio.ac.jp

Abstract

Extended T-N Plane Abstraction (E-TNPA) proposed in
this paper realizes work-conserving and efficient optimal
real-time scheduling on multiprocessors relative to the orig-
inal T-N Plane Abstraction (TNPA). Additionally a schedul-
ing algorithm named NVNLF (No Virtual Nodal Laxity
First) is presented for E-TNPA. E-TNPA and NVNLF re-
lax the restrictions of TNPA and the traditional algorithm
LNREF, respectively. Arbitrary tasks can be preferentially
executed by both tie-breaking rules and time apportionment
policies in accordance with various system requirements
with several restrictions. Simulation results show that E-
TNPA significantly reduces the number of task preemptions
as compared to TNPA.

1. Introduction

Optimal real-time scheduling algorithms realize efficient
systems theoretically. They achieve the schedulable utiliza-
tion bound which is equal to the system capacity. Three
optimal real-time scheduling approaches for multiproces-
sors are hitherto presented (i.e., Pfair [3], EKG [1], and
LNREF [4, 5]). Pfair algorithms incur significant run-time
overhead due to their quantum-based scheduling approach.
Furthermore all task parameters must be multiples of the
quantum size in Pfair algorithms. EKG concentrates the
workload on some processors due to the approach similar
to partitioned scheduling. This characteristic causes some
problems on practical environments. For example, from the
viewpoint of energy efficiency, energy consumption is mini-
mized when the workload is balanced among processors [2].
Energy efficiency is critically important for battery-based
embedded systems. LNREF is an efficient algorithm on the
balance as compared to the other optimal algorithms.

LNREF is based on the abstraction technique called T-N
Plane Abstraction (TNPA). LNREF is an optimal real-time

∗This research is supported by CREST, JST.

scheduling algorithm for multiprocessors; however LNREF
is non-work-conserving due to the restriction of TNPA,
whereas Extended T-N Plane Abstraction (E-TNPA) pro-
posed in this paper realizes work-conserving algorithms.
A scheduling algorithm is work-conserving if and only if
it never idles processors when there exists at least one
active task awaiting the execution in the system. Work-
conserving algorithms have some advantages against non-
work-conserving ones. In particular, average response
time under work-conserving algorithms may be lower than
that under non-work-conserving ones because no proces-
sor time is wasted. As a result, run-time costs under work-
conserving algorithms may be lower than that under non-
work-conserving ones because unnecessary task preemp-
tions may be able to be avoided. Therefore one of the con-
tributions of this paper is the practicality improvement of
optimal real-time scheduling on actual environments.

The other contribution of this paper is that the restric-
tions of both TNPA and LNREF are relaxed by E-TNPA
and NVNLF proposed in this paper to satisfy various sys-
tem requirements with several restrictions. If a scheduling
algorithm has tight restrictions, some types of systems do
not prefer the algorithm. For example, the motor control
of humanoid robots requires the minimized jitter to realize
precise motions [7]. Aperiodic task scheduling with hard
real-time periodic tasks such as aperiodic servers [8], which
behave as periodic tasks, requires the minimized response
time. In NVNLF based on E-TNPA, these tasks can be
preferentially executed by both tie-breaking rules and time
apportionment policies described in the later sections.

The problem of scheduling a set of periodic tasks on a
multiprocessor system is presented. The system is modeled
as M processors and a taskset T = {T1, . . . , TN}, which
is a set of N periodic tasks. Each processor can execute at
most one task. Each task can not be executed in parallel
among processors. Each task Ti is characterized by two
parameters, worst-case execution time ci and period pi. A
task Ti requires ci processor time at every pi interval (i.e., a
task generates a sequence of jobs periodically). The relative
deadline di is equal to its period pi. All tasks must complete

Ti

time

fluid schedule pathremaining

practical schedule pathci

release time deadline

execution time

pi

ri

blocked

Figure 1. Fluid and practical schedules.

the execution by the deadlines. The ratio ci/pi, denoted ui

(0 < ui ≤ 1), is called task utilization. U =
∑

Ti∈T ui

denotes total utilization. We assume that all tasks may be
preempted and migrated among processors at any time, and
are independent (i.e., they do not share resources and do not
have any precedence for each other).

The remainder of this paper is organized as follows. The
next section explains the traditional techniques TNPA and
LNREF. In Section 3, E-TNPA and NVNLF are presented.
Section 4 evaluates the effectiveness of E-TNPA. Finally we
conclude with a summary and future work in Section 5.

2. T-N Plane Abstraction

T-N Plane Abstraction (TNPA) [4, 5] is an abstraction
technique of real-time scheduling. TNPA is based on the
fluid scheduling model [6]. In the fluid scheduling model,
each task is executed at a constant rate at all times. Figure
1 illustrates the difference between the fluid schedule and
a practical schedule. The upper area of the figure repre-
sents time on horizontal axis and task’s remaining execution
time on vertical axis. In practical scheduling, the task will
be blocked by the other tasks as shown in the lower area
of the figure since a processor can execute only one task
simultaneously. On the other hand, in the fluid schedul-
ing model, each task Ti is always executed along its fluid
schedule path, the dotted line from (ri, ci) to (ri + pi, 0),
where ri represents the release time of the current job. The
fluid scheduling can not realize optimal schedule on practi-
cal environments since a processor must execute some tasks
simultaneously. Notice that tasks need not constantly track
their fluid schedule paths. Namely deadlines are the only
time at which tasks must track the fluid schedule paths.

Figure 2 shows the way TNPA abstracts real-time
scheduling. Time is divided by the deadlines of all tasks
as the vertical dotted lines in the figure. The intervals be-
tween every two consecutive deadlines are called nodes.
The right isosceles triangles called T-N planes (Time and
Nodal remaining execution time domain planes) are placed

T1

time

T2

TN

fluid schedule path T-N plane
remaining execution time

deadline

p1

p2

pN

k T-N planek+1k-1th thth

execution time
nodal remaining

c2

c1

cN

overlapped

nodek k+1k-1th thth

Figure 2. T-N Plane Abstraction.

inside the nodes of all tasks. The rightmost vertex of each
T-N plane coincides with the intersection of the fluid sched-
ule path and the right side of each node. Since all the T-
N planes in the same node are congruent, we have only to
keep in mind an overlapped T-N plane shown in the lower
area of the figure at a time. The overlapped T-N plane rep-
resents time on horizontal axis and task’s nodal remaining
execution time on vertical axis. If the nodal remaining ex-
ecution time becomes zero at the rightmost vertex of each
T-N plane, the task execution follows the fluid schedule path
at every deadline. Since T-N planes are repeated over time,
good scheduling algorithms for a single T-N plane can help
all tasks to meet their deadlines. Therefore the problem is
the way to conduct all tasks to the rightmost vertex of the
T-N plane. Note that all the algorithms based on TNPA are
non-work-conserving. The tasks, the nodal remaining ex-
ecution time of which is zero, are not executed within the
current node even if the remaining execution time is not
zero. In fact, these tasks can be executed in unoccupied
time; however it incurs unnecessary task preemptions.

Figure 3 shows an overlapped T-N plane, where tokens
representing tasks move from time t0 to tf . All tokens are
on their fluid schedule paths at time t0. A token moves di-
agonally down if the task is executed; otherwise it moves
horizontally. If all tokens arrive at the rightmost vertex,
all tasks meet their deadlines. The successful arrival to the
rightmost vertex is called nodally feasible. For the nodal
feasibility, Events C and B occur when tokens hit the no
nodal laxity diagonal (NNLD) and the bottom side of the T-
N plane, respectively. The scheduler is invoked at time t0,
Event C, and Event B. We assume that jth event occurs at

Event B

Event C

tf
0

tf
nodal remaining execution time

time
t1 t2

T1

T3
T4

T2

P1

P2

time

T1

T2

T1 T1

T3 T4

token

no nodal laxity diagonal (NNLD)

fluid schedule path

t

t

Figure 3. LNREF based on TNPA.

time tj . For each task Ti, nodal remaining execution time
at time tj is defined as li,j . LNREF selects M tokens in
Largest Nodal Remaining Execution time First. All tokens
are nodally feasible if U ≤ M . Besides scheduling policies
other than LNREF may also provide the nodal feasibility.
LNREF based on TNPA is optimal in the sense that any pe-
riodic taskset with utilization U ≤ M will be scheduled
to meet all deadlines. The successful schedule to meet all
deadlines is called globally feasible to accentuate the differ-
ence with nodally feasible. If U > M , no algorithm can
realize the global feasibility. Thus we assume that U ≤ M .

For example, there are four tasks (T1, T2, T3, T4) and
two processors (P1, P2) as shown in Figure 3. Since there
are two processors, two tasks can be executed simultane-
ously. At time t0, T1 and T2 are executed on P1 and P2 by
LNREF. Event B occurs at time t1 since T2 hits the bottom
side of the T-N plane. Then two tasks T1 and T3 are selected
again in the same manner. Event C occurs at time t2 since
T4 hits the oblique side (NNLD) of the T-N plane. As just
described, the scheduler is invoked at every event.

3. Extended T-N Plane Abstraction

Extended T-N Plane Abstraction (E-TNPA) realizes
work-conserving optimal real-time scheduling. E-TNPA
differs from TNPA in the sense that the processor time un-
used by the taskset in TNPA is apportioned among tasks.
Moreover the processor time apportionment is flexibly de-
cided by arbitrary policies with several restrictions in E-

tf
0

nodal remaining execution time

time

token

t

a i,k

no virtual nodal laxity diagonal (NVNLD)

T

virtual nodal laxity

tcurrent

i

no nodal remaining horizon (NNRH)

additional nodal time

a+ i,k

(updated) fluid schedule path
l i,0

tf t

tf t

Figure 4. An extended T-N plane (ai,k ≥ 0).

TNPA, while TNPA allocates the stationary nodal remain-
ing execution time ui(tf −t0) for each task Ti in each node.

Figures 4 and 5 show new T-N planes for E-TNPA. T-N
planes are not triangles but trapeziums; furthermore they are
no longer congruent even in the same node. In the kth node,
each task Ti has additional nodal time ai,k and initial nodal
remaining execution time li,0 = ui(tf − t0) + ai,k. A =∑

Ti∈T ai denotes total additional nodal time. ai,k never
changes throughout the node; however it can be changed at
time t0 in each node. If ai,k ≥ 0, the fluid schedule path
runs through the upper right vertex of the T-N plane; other-
wise it runs through the lower right vertex. Thus the initial
nodal remaining execution time li,0 is the intersection of
the fluid schedule path and the left side of the T-N plane as
shown in the figures. A line called no virtual nodal laxity
diagonal (NVNLD) is drawn from (t0, tf − t0) to (tf , 0).
The line which represents that tasks have no nodal remain-
ing execution time is called no nodal remaining horizon
(NNRH). Event C and Event B occur when tokens hit the
NVNLD and the NNRH, respectively. The successful ar-
rival to (tf , 0) is called nodally feasible. All tokens must be
in the shaded triangle called virtual T-N plane for the nodal
feasibility. Notice that the overlapped T-N plane of TNPA
and the overlapped virtual T-N plane of E-TNPA have the
same concepts since all the virtual T-N planes in the same
node are congruent. Consequently all tasks are both nodally
feasible and globally feasible if ai,k is assigned carefully.

The overview of E-TNPA is shown in Figure 6. The fig-
ure shows consecutive T-N planes of a task Ti. If a task Ti

completes the execution in the kth node even if ai,k = 0, the
task gets a zero or negative additional nodal time ai,k ≤ 0;

tf

0

nodal remaining execution time

time

token

t
a i,k

no virtual nodal laxity diagonal (NVNLD)

T

tcurrent

i

additional nodal time

no nodal remaining horizon (NNRH)

virtual nodal laxity

(updated) fluid schedule path

l i,0

tf t

Figure 5. An extended T-N plane (ai,k < 0).

thth th

i

remaining execution time

time

c

k nodek+1 k+2

Event C

Event B

NVNLD

0

icoriginal fluid schedule path
updated fluid schedule path

ip

ri

Figure 6. Consecutive extended T-N planes.

otherwise the task is assigned a zero or positive additional
nodal time ai,k ≥ 0. If a task gets a positive additional
nodal time ai,k > 0 and the token arrives at the rightmost
vertex of the current virtual T-N plane, the fluid schedule
path is updated as shown in the figure; namely the updated
fluid schedule path starts from the lower right vertex of
the current T-N plane and runs parallel to the original fluid
schedule path. Thus the position of the virtual T-N plane
in the next node is always the same as or lower than the
T-N plane of TNPA as shown in the figure. The (k + 2)th

T-N plane gets a negative additional nodal time ai,k+2 < 0
since the task completes the execution in the node. The time
(−ai,k+2) is apportioned among the other T-N planes in the
same node. Therefore the negative additional nodal time is
consumed by the other tasks.

T1

TM+1

TM

critical
moment

NVNLD

time

nodal remaining execution time

0 tf

tf t

t

Figure 7. Critical moment.

3.1. Nodal and Global Feasibilities

E-TNPA must ensure both the nodal feasibility and the
global feasibility. In TNPA, all tokens are globally feasible
in obvious if they are nodally feasible. On the other hand,
in E-TNPA, tokens may not be globally feasible even if they
are nodally feasible. We focus on all the T-N planes in the
kth node. The problem is the way to assign ai,k (ai for
simplicity) for each task Ti. There are three restrictions to
accomplish the nodal and global feasibilities in E-TNPA.

Cho et al. [4] show that critical moment is the sufficient
and necessary condition where tokens are not nodally feasi-
ble in TNPA. It is partly available in E-TNPA. In E-TNPA,
critical moment is the first time when more than M tokens
simultaneously hit the NVNLD of the overlapped virtual T-
N plane as shown in Figure 7. Theorem 1 shows that critical
moment is undesirable for the nodal feasibility.

Theorem 1 (Critical Moment). If at least one critical mo-
ment occurs, tokens are not nodally feasible in E-TNPA.

Proof. The sufficiency is the same as that of TNPA [4]. As-
sume that a critical moment occurs. At least one token pro-
trudes the overlapped virtual T-N plane since at most M to-
kens can be selected on M processors. Non-selected tokens
move out of the virtual T-N plane after the critical moment.
The lunging tokens are no longer nodally feasible in the re-
sult since the slope of token paths is either 0 or −1.

Theorem 1 implies that critical moment is the sufficient
condition for the nodal feasibility in E-TNPA, while it is
the sufficient and necessary condition in TNPA. The reason
comes from the fact that tasks with initial nodal remaining
execution time li,0 > tf − t0 never arrive at the rightmost
vertex of the virtual T-N plane (i.e., the tasks are outside the
virtual T-N plane from the beginning). Consequently the
condition ∃i : li,0 > tf − t0 is not acceptable. Theorem 2
shows the first restriction (1) for the nodal feasibility.

Theorem 2 (Maximum Additional Nodal Time). The po-
sitions of all tokens are the same as or lower than that of
the topmost vertex of the virtual T-N plane at time t0 iff
ai ≤ (1 − ui)(tf − t0) for all i.

Proof. The height of the virtual T-N plane is tf − t0. Thus
the sufficient and necessary condition of the proposition is

li,0 ≤ tf − t0

⇔ui(tf − t0) + ai ≤ tf − t0

⇔ai ≤ (1 − ui)(tf − t0) (1)

for all i.

The detailed condition at the time when a critical mo-
ment occurs can be derived from the idea of total nodal
utilization introduced by Cho et al [4]. The nodal utiliza-
tion of Ti at time tj is defined as ri,j = li,j/(tf − tj).
Sj =

∑
Ti∈T ri,j denotes total nodal utilization at time tj .

Theorem 3 (Total Nodal Utilization at Critical Moment). If
a critical moment occurs at time tj in E-TNPA, Sj > M .

Proof. This proof is the same as that of TNPA [4] since the
T-N plane of TNPA and the virtual T-N plane of E-TNPA
have the same concepts.

The contraposition of Theorem 3 implies that “no critical
moment occurs if Sj ≤ M for all j.” Therefore scheduling
algorithms based on E-TNPA must ensure Sj ≤ M for all j.
Theorem 4 presents the second restriction (2) for the nodal
feasibility. The theorem only shows the initial condition at
time t0. The subsequent works (i.e., ∀j > 0 : Sj ≤ M)
must be ensured by the scheduling algorithms.

Theorem 4 (Maximum Total Additional Nodal Time).
S0 ≤ M iff A ≤ (M − U)(tf − t0).

Proof.

S0 ≤ M

⇔
∑
Ti∈T

ri,0 −
∑
Ti∈T

ui ≤ M −
∑
Ti∈T

ui

⇔
∑
Ti∈T

(
li,0

tf − t0
− ui

)
≤ M − U

⇔
∑
Ti∈T

(li,0 − ui(tf − t0)) ≤ (M − U)(tf − t0)

⇔
∑
Ti∈T

ai ≤ (M − U)(tf − t0). (2)

Finally the global feasibility is established. The right-
most vertex of the virtual T-N plane must be on or below the
original fluid schedule path; otherwise the task may miss its
deadline (time management between the current node and
future nodes is not considered in this paper since the mecha-
nism requires future information). Consequently remaining
execution time must be retained to compare the rightmost
vertex with the original fluid schedule path. ei,j denotes the
remaining execution time of a task Ti at time tj . The final
restriction (3) for the global feasibility is as follows.

Theorem 5 (Minimum Additional Nodal Time). The right-
most vertexes of all the virtual T-N planes in the current
node are on or below the original fluid schedule paths iff
ai ≥ ei,0 − ci + ui(t0 − ri) for all i.

Proof. The remaining execution time at the rightmost ver-
tex of the virtual T-N plane is ei,0 − ui(tf − t0) − ai, and
the remaining execution time of the original fluid schedule
path at time tf is ci −ui(tf − ri) for each task Ti. Thus the
right most vertexes of all the virtual T-N planes in the cur-
rent node are on or below the original fluid schedule paths
iff

ci − ui(tf − ri) ≥ ei,0 − ui(tf − t0) − ai

⇔ai ≥ ei,0 − ci + ui(t0 − ri) (3)

for all i.

3.2. Time Apportionment

The purpose of time apportionment is that all processor
time in each node is maximally consumed by active tasks.
A simple time apportionment algorithm is shown in Fig-
ure 8. The algorithm first calculates the time unused by the
taskset in TNPA at Line 2. Total processor time between
time t0 and tf is M(tf − t0), and the processor time used
by TNPA in the interval is U(tf − t0). Therefore the unoc-
cupied time (M − U)(tf − t0) can be apportioned among
tasks. Then each nodal remaining execution time li,0 is ini-
tialized to ui(tf − t0) at Line 4 (i.e., it is the same as that
in TNPA). The time kept by the tasks which complete the
execution in the current node without any additional nodal
time is retrieved at Lines 3-13. The unoccupied time L′ is
apportioned among the other tasks at Lines 14-25. All tasks
run through Line 7, 18, or 20. The tasks which run through
Line 7 certainly complete the execution in this node even
if ai = 0. The tasks which run through Line 18 complete
the execution in this node if the task can receive enough
ai. The tasks which run through Line 20 can not complete
the execution in this node. The algorithm ensures the nodal
and global feasibilities described in the previous section as
shown in the following three theorems.

Algorithm: ApportionTime
1: when time t0 in each node
2: L′ = (M − U)(tf − t0)
3: foreach 1..N as i
4: li,0 = ui(tf − t0)
5: if ei,0 ≤ li,0
6: // retrieve additional nodal time (ai ≤ 0)
7: ai = ei,0 − li,0
8: li,0 = li,0 + ai

9: L′ = L′ − ai

10: else
11: ai = NULL
12: end if
13: end foreach
14: foreach 1..N as i
15: if ai is NULL
16: // apportion additional nodal time (ai ≥ 0)
17: if ei,0 ≤ tf − t0
18: ai = min{ei,0 − li,0, L

′}
19: else
20: ai = min{(tf − t0) − li,0, L

′}
21: end if
22: li,0 = li,0 + ai

23: L′ = L′ − ai

24: end if
25: end foreach
26: L = L′ // leftover time for proofs
27: end when

Figure 8. ApportionTime.

Theorem 6 (Maximum Additional Nodal Time by Appor-
tionTime). Additional nodal time given by ApportionTime
satisfies ai ≤ (1 − ui)(tf − t0) for all i.

Proof. The tasks which run through Line 7 satisfy the in-
equality since ai ≤ 0 and (1 − ui)(tf − t0) ≥ 0. The tasks
which run through Line 18 satisfy the inequality as follows:

(1 − ui)(tf − t0) − ai

=(1 − ui)(tf − t0) − (ei,0 − li,0)
⇓ since ei,0 ≤ tf − t0 and li,0 = ui(tf − t0)
≥(1 − ui)(tf − t0) − (tf − t0) + ui(tf − t0) = 0
⇒(1 − ui)(tf − t0) ≥ ai.

The tasks which run through Line 20 also satisfy the in-
equality in the same manner as Line 18.

Theorem 7 (Total Additional Nodal Time by Apportion-
Time). Total additional nodal time given by ApportionTime
satisfies A ≤ (M − U)(tf − t0).

Proof. L′ is initialized to (M −U)(tf − t0) at Line 2. The
tasks which run through Line 7 receive zero or negative ad-
ditional nodal time, and the time is retrieved to L′ at Line

9. Lines 18 and 20 limit the maximum receivable additional
nodal time to L′. Thus total additional nodal time given by
ApportionTime is at most (M − U)(tf − t0).

Theorem 8 (Minimum Additional Nodal Time by Appor-
tionTime). Additional nodal time given by ApportionTime
satisfies ai ≥ ei,0 − ci + ui(t0 − ri) for all i.

Proof. The tasks which run through either Line 7 or Line
18 satisfy the inequality for all i as follows:

ai − (ei,0 − ci + ui(t0 − ri))
= (ei,0 − ui(tf − t0)) − (ei,0 − ci + ui(t0 − ri))
= − uitf + ci + uiri

=ci − (ci/pi)(tf − ri)
=ci (1 − (tf − ri)/pi)
⇓ since pi ≥ tf − ri

≥0
⇒ai ≥ ei,0 − ci + ui(t0 − ri).

The tasks which run through Line 20 also satisfy the in-
equality as follows. Since the tasks do not complete the
execution in this node (i.e., ei,0 > tf − t0), the tasks are
assigned zero or positive additional time ai ≥ 0 in the T-
N planes between time ri and tf , where ri is the release
time of the current job. Therefore the T-N planes between
time ri and tf have the shape which is shown in Figure 4.
The rightmost vertex of the virtual T-N plane is on or below
the original fluid schedule path as shown in Figure 4. Thus
ai ≥ ei,0 − ci + ui(t0 − ri) is satisfied by Theorem 5.

Notice that ApportionTime assigns additional nodal time
in increasing task index order which does not depend on any
task parameters. Therefore arbitrary tasks can preferentially
receive additional nodal time by task sorting (e.g., smallest
remaining execution time first, aperiodic server first, and
motor control first). Time apportionment algorithms can be
designed to satisfy various types of systems.

The time apportionment can be realized by O(N) or
more complex algorithms. The number of the time appor-
tionments can be bounded as follows. Fortunately the num-
ber of Event C and Event B does not affect the bound.

Theorem 9 (Upper-bound on the Number of the Time Ap-
portionments). The number of the time apportionments dur-
ing the time interval I is at most

∑
Ti∈T

⌈
I

pi

⌉
.

Proof. The number of task releases during the time interval
I is

∑
Ti∈T�I/pi	. The number of the time apportionments

is the same as that of task releases.

nodal remaining execution time

time
tj-1

Tp

Tq

tj

selected tokens
non-selected tokens

Event C

NVNLD

0

NNRH

tf t

tft

Figure 9. NVNLF (M = 4).

3.3. NVNLF Scheduling Algorithm

NVNLF assigns the highest priority to the tasks which
have no virtual nodal laxity, and ties are broken arbitrarily.
The tasks which are not on NVNLD can be flexibly exe-
cuted by arbitrary tie-breaking rules as shown in Figure 9,
while LNREF must select tokens in decreasing nodal re-
maining execution time. In NVNLF, either Tq or Tp incurs
Event B or Event C at time tj , respectively, where Tq has the
smallest nodal remaining execution time in executed tasks,
and Tp has the smallest virtual nodal laxity in non-executed
tasks. First we show that Sj is monotonically decreasing.

Lemma 10 (Total Nodal Utilization). Sj−1 ≥ Sj for all j.

Proof. The induction hypothesis is

Sj−1 = S

⇔
∑
Ti∈T

li,j−1

tf − tj−1
= S

⇔
∑
Ti∈T

li,j−1 = S(tf − tj−1), (4)

where S ≤ M . Assume that N ′(≤ M) tokens can be se-
lected at time tj−1. Since all tasks are in the virtual T-N
plane at first from Theorems 2 and 6, ri,j−1 ≤ 1 for all i.
Sj−1 = S ≤ N ′ is derived from S ≤ M and ri,j−1 ≤ 1
for all i. The total remaining execution time decreases by
N ′(tj − tj−1) between time tj−1 and tj . Sj is as follows:

Sj =
1

tf − tj

∑
Ti∈T

li,j

=
1

tf − tj

 ∑

Ti∈T

li,j−1

 − N ′(tj − tj−1)

⇓ since Equation (4)

=
S(tf − tj−1) − N ′(tj − tj−1)

tf − tj
. (5)

We have

Sj−1 − Sj

=S − S(tf − tj−1) − N ′(tj − tj−1)
tf − tj

=
tj − tj−1

tf − tj
(N ′ − S) ≥ 0

⇒Sj−1 ≥ Sj .

Thus Sj−1 ≥ Sj for all j.

Lemma 10 implies that the initial condition S0 ≤ M
is important for the nodal feasibility. NVNLF based on E-
TNPA is optimal as shown in the following theorem.

Theorem 11 (Optimality of NVNLF). Any periodic taskset
T with utilization U ≤ M will be scheduled to meet all
deadlines on M processors by NVNLF.

Proof. Theorem 7 and the proof of Theorem 4 show that
S0 ≤ M in E-TNPA. Lemma 10 shows that Sj is mono-
tonically decreasing. Since S0 ≤ M and Sj is monoton-
ically decreasing, Sj ≤ M for all j. Therefore all tokens
are nodally feasible since no critical moment occurs. The
global feasibility is already established by E-TNPA.

The number of NVNLF scheduler invocations can be
bounded in the same manner as LNREF based on TNPA [4].

Theorem 12 (Upper-bound of NVNLF Scheduler Invoca-
tions over Time in E-TNPA). The number of NVNLF sched-
uler invocations during the time interval I in E-TNPA is at
most

(N + 1)

1 +

∑
Ti∈T

⌈
I

pi

⌉
 .

Proof. This proof is the same as that of LNREF [4] since
ai = 0 for all i at the worst case.

3.4. Work-Conserving

This section shows that NVNLF based on E-TNPA is
work-conserving. A task Ti is nodally active at time tj if
and only if the task has non-zero nodal remaining execution
time li,j > 0. Non-work-conserving algorithms based on
TNPA can not select active and nodally inactive tasks.

The total processor time between time tj and tf is
M(tf − tj). When total nodal remaining execution time
is M(tf − tj), there is no margin for the nodal feasibility.
In this case, total utilization becomes as follows:

Sj =
∑
Ti∈T

li,j
tf − tj

=
M(tf − tj)

tf − tj
= M.

If Sj = M , no processor time can be unavailingly wasted
between time tj and tf for the nodal feasibility. If ∃j :
Sj = M , total utilization is always M throughout the cur-
rent node as shown in the following lemma.

Lemma 13 (Total Nodal Utilization in Full-Loaded Condi-
tion). ∀j : Sj = M if ∃j : Sj = M .

Proof. Assume that there exists an integer x which satis-
fies Sx−1 = M . (A) M is assigned to S in Equations (4)
and (5). Then Sx becomes M . Thus Sx−1 = M ⇒ ∀j >
x − 1 : Sj = M by the inductive method. (B) The propo-
sition Sx−1 = M ⇒ ∀j < x − 1 : Sj = M is also correct
as follows. Because Sj is monotonically decreasing from
Lemma 10, ∀j < x − 1 : Sj ≥ M . No critical moment
occurs before time tj−1 since NVNLF is optimal from The-
orem 11. Thus ∀j < x − 1 : Sj ≤ M from Theorem 3.
For all j < x − 1, Sj = M is derived from Sj ≥ M and
Sj ≤ M . (A) and (B) show that Sj = M for all j if there
exists an integer j which satisfies Sj = M .

The relation between S0 and A is as follows.

Lemma 14 (Total Additional Nodal Time in Full-Loaded
Condition). A = (M − U)(tf − t0) iff S0 = M .

Proof. The inequality signs in the proof of Theorem 4 can
be changed to the equal signs. Thus A = (M −U)(tf − t0)
iff S0 = M .

Maximum total additional nodal time is (M−U)(tf−t0)
based on Theorem 4. Consequently the time which can not
be apportioned among tasks is calculated as L = (M −
U)(tf − t0) − A as shown at Line 26 in Figure 8. If the
system is in a full-loaded condition Sj = M at time tj , L
becomes zero as shown in the following theorem.

Lemma 15 (Leftover Time in Full-Loaded Condition). L =
0 iff ∃j : Sj = M .

Proof.

∃j : Sj = M

⇓ since Lemmas 13 and 14

⇔ A = (M − U)(tf − t0)
⇓ since L = (M − U)(tf − t0) − A

⇔ L = 0.

NVNLF based on E-TNPA is work-conserving as shown
in the following theorem.

Theorem 16 (Work-Conserving). NVNLF based on E-
TNPA is work-conserving.

time

worst-case remaining execution time

0 t jtj-1 t j

theoretical schedule path

actual schedule path

Ti

Event B

l i,j

Figure 10. Actual and theoretical schedules.

Proof. Following three cases are possible. (A) If ∃j : Sj =
M , there exist more than or equal to M nodally active tasks
throughout the current node since ∀j : Sj = M from
Lemma 13 and ri,j ≤ 1 for all i, j. Thus M tokens can
be always selected. (B-1) The case of Sj < M and L = 0
is nonexistent since L = 0 ⇔ Sj = M from Lemmas
13 and 15. (B-2) The case of Sj < M and L �= 0 is as
follows. Only the tasks which run through Lines 18 and
20 incur non-work-conserving schedules (the tasks which
run through Line 7 need not be considered since the tasks
certainly complete the execution within the current node).
Since L �= 0, additional nodal time is not limited by L′ at
Lines 18 and 20 in Figure 8. Consequently the tasks which
run through Lines 18 and 20 receive the maximum initial
nodal remaining execution time ei,0 and tf−t0 at Line 22 in
Figure 8, respectively. The tasks which run through Line 18
complete the execution within the current node. The tasks
which run through Line 20 are always executed in the cur-
rent node. From (A), (B-1), and (B-2), NVNLF can always
select all active tasks up to M in E-TNPA.

3.5. T-N Plane Update

NVNLF based on E-TNPA may be non-work-conserving
on practical environments as follows. Each task Ti almost
always completes the execution at time tj′ earlier than ci

is completely consumed as shown in Figure 10 because ci

represents “worst-case” execution time. The figure shows a
single virtual T-N plane for a task Ti. The scheduler can de-
tect the early completion, and then Event B occurs at time
tj′ . In this case, the time li,j′ , which represents the the-
oretical value, can not be reused by the other tasks since
the time is held by the inactive task Ti. Time reapportion-
ment such as ReapportionTime shown in Figure 11 is per-
formed at every task completion (i.e., the assumption “ai

Algorithm: ReapportionTime
1: when a task Tc completes the execution at time tj′

2: // retrieve the additional nodal time of the task Tc

3: L′ = lc,j′

4: foreach 1..N as i
5: if ei,j′ > li,j′
6: // apportion additional nodal time (∆ ≥ 0)
7: if ei,j′ ≤ tf − tj′

8: ∆ = min{ei,j′ − li,j′ , L
′}

9: else
10: ∆ = min{(tf − tj′) − li,j′ , L

′}
11: end if
12: αi = αi + ∆
13: li,j′ = li,j′ + ∆
14: L′ = L′ − ∆
15: end if
16: end foreach
17: end when

Figure 11. ReapportionTime.

never changes throughout a node” shown in the previous
section is overturned). ReapportionTime is based on Ap-
portionTime shown in Figure 8. The difference between
ApportionTime and ReapportionTime is that Reapportion-
Time retrieves unavailable time only from the completing
task . All tokens remain nodally feasible and globally feasi-
ble, and NVNLF based on E-TNPA is work-conserving as
shown in the following two theorems.

Theorem 17 (Feasibility on Practical Environments). All
tokens remain nodally and globally feasible even if the T-N
plane is updated by ReapportionTime.

Proof. Theorem 11 shows that all tokens are nodally and
globally feasible before the update. If all tokens are nodally
feasible, no critical moment occurs from Theorem 1. Thus
we obtain Sj′ ≤ M before the update from Theorem 3.
Consider tj′ as t0 (i.e., the virtual T-N plane becomes the
deeply shaded triangle shown in Figure 10). Sj′ ≤ M can
be written to S0 ≤ M . Then the deeply shaded triangle
is updated by ReapportionTime. In this case, Inequalities
(1)(2)(3) are preserved since ReapportionTime is based on
ApportionTime. Therefore all tokens remain nodally and
globally feasible in the updated T-N plane.

Theorem 18 (Work-Conserving on Practical Environ-
ments). NVNLF based on E-TNPA is work-conserving if the
T-N plane is updated by ReapportionTime.

Proof. Consider tj′ as t0. Then the deeply shaded triangle
shown in Figure 10 is updated by ReapportionTime. Theo-
rem 16 can be applied to the updated deeply shaded triangle
since ReapportionTime is based on ApportionTime. There-
fore NVNLF based on E-TNPA is work-conserving if the
T-N plane is updated by ReapportionTime.

The time reapportionment policies can be designed in the
same way as the time apportionment. Therefore arbitrary
tasks can preferentially receive additional nodal time.

Time reapportionment can be realized by O(N) or more
complex algorithms. The number of the time reapportion-
ments can be bounded by the following theorem.

Theorem 19 (Upper-bound on the Number of Time Reap-
portionments). The number of the time reapportionments
during the time interval I is at most

∑
Ti∈T

(⌈
I

pi

⌉
+ 1

)
.

Proof. The number of task releases during the time interval
I is

∑
Ti∈T�I/pi	. Thus the number of task completions

during the interval is at most
∑

Ti∈T(�I/pi	 + 1).

4. Simulation

The advancement of E-TNPA is evaluated by comparing
with TNPA in terms of the number of task preemptions. The
number of task preemptions directly affects the scheduling
overhead. In each node, tasks are scheduled by NVNLF,
and ties are broken by LNREF. In E-TNPA, the tasks which
have the smallest remaining execution time preferentially
receive additional nodal time to reduce the number of ac-
tive tasks as early as possible (i.e., tasks are indexed in
increasing remaining execution time order in Apportion-
Time). EKG and EDZL [9] are also compared. Although
EDZL is not optimal, it is known as an efficient algorithm.
The schedulable total utilization bound of EDZL does not
exceed (1 − 1/e)M � 0.6321M , where e is the Euler’s
number (the exact bound has not been presented). In EDZL,
the results of schedulable tasksets are presented (i.e., un-
schedulable tasksets are not considered). Pfair algorithms
are not compared since the run-time overhead is clearly
large due to their quantum-based scheduling approach.

Each simulation is modeled as sixteen processors and a
taskset. The taskset is initially empty. A new task is ap-
pended to the taskset as long as U ≤ Utarget, where Utarget
is the target utilization for each simulation. For each task
Ti, its utilization ui is computed based on a uniform distri-
bution within the range of [0.01, 1.0]. Only the utilization of
the last task is adjusted so that U becomes equal to Utarget.
Each task Ti is generated with the period pi in the integer
rang of [100, 3000] and the worst-case execution time ci =
uipi. For each task Ti, actual execution time is equal to its
worst-case execution time ci since the worst-case number
of task preemptions is important in real-time systems. The
simulation interval is [0, min{lcm{pi|Ti ∈ T}, 232}]. In
order to measure the average number of task preemptions,
hundred simulations are conducted for each total utilization.

 0

 0.03

 0.06

 0.09

 0.12

 0.2 0.4 0.6 0.8 1

T
he

 n
or

m
al

iz
ed

 n
um

be
r

of
 ta

sk
 p

re
em

pt
io

ns

System utilization

E-TNPA
TNPA

EKG
EDZL

Figure 12. The number of task preemptions.

Figure 12 shows the results plotted at every 0.025 sys-
tem utilization U/M for each algorithm. The figure shows
system utilization U/M on the horizontal axis and the aver-
age number of task preemptions on the vertical axis normal-
ized by M and the simulation interval. When the number
of tasks is small, few preemptions occur in global schedul-
ing (e.g., E-TNPA, TNPA, and EDZL) since the workload
is distributed among processors. In EKG, on the other hand,
the number of task preemptions in lower system utilization
is larger than the other algorithms since EKG concentrates
the workload on some processors. EDZL is the most ef-
ficient algorithm in the simulation; however some tasksets
miss the deadlines in EDZL when U exceeds the schedu-
lable bound. E-TNPA significantly reduces the number of
task preemptions relative to TNPA since the number of ac-
tive tasks decreases early. The last big jump of E-TNPA
comes from the fact that (1) M−U = 40% time of a proces-
sor is still available for the time apportionment at the total
utilization U = 15.6 (U/M = 0.975), and (2) E-TNPA cre-
ates the same schedule as TNPA at the worst case U/M = 1
because ai becomes zero for all i. The difference between
E-TNPA and EDZL is not significantly large in the utiliza-
tion where EDZL can guarantee the schedulability.

5. Conclusions and Future Work

E-TNPA proposed in this paper leverages the ideas of
time apportionment and virtual nodal laxity. NVNLF as-
signs the highest priority to the tasks which have no vir-
tual nodal laxity, and ties are broken arbitrarily. E-TNPA
and NVNLF have attractive advantages against TNPA and
LNREF in the sense that (1) the schedule becomes work-
conserving, and (2) arbitrary policies can be leveraged for
both the time apportionment and the scheduling tie-break.

E-TNPA has only two disadvantages against TNPA. One
is that E-TNPA must retain task’s remaining execution time.

However it causes little overhead because the remaining ex-
ecution time is not actual one but theoretical one. The other
is that E-TNPA must apportion time at every node to realize
work-conserving schedule. It can be realized by O(N) or
more complex algorithms, where N is the number of tasks.
The overhead of the time apportionment is worthy of little
attention if the algorithm is reasonably simple. Addition-
ally the number of the time apportionments over time can
be bounded by the number of task releases.

Efficient time apportionment is a topic for the future
work. The time apportionment algorithm proposed in this
paper apportions time only among the T-N planes in the
same node. The additional nodal time of the current node
can be lent to or borrowed from the future nodes of the other
tasks. In consequence, we might be hopefully able to find
an optimal real-time scheduling algorithm for multiproces-
sors which can schedule tasks with much lower overhead.

References

[1] B. Andersson and E. Tovar. Multiprocessor Scheduling with
Few Preemptions. In Proc. of the 12th IEEE International
Conference on Embedded and Real-Time Computing Systems
and Applications, pages 322–334, Aug. 2006.

[2] H. Aydin and Q. Yang. Energy-Aware Partitioning for Multi-
processor Real-Time Systems. In Proc. of the 17th IEEE In-
ternational Parallel and Distributed Processing Symposium,
pages 22–26, Sept. 2003.

[3] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel.
Proportionate Progress: A Notion of Fairess in Resource Al-
location. Algorithmica, 15(6):600–625, June 1996.

[4] H. Cho, B. Ravindran, and E. D. Jensen. An Optimal Real-
Time Scheduling Algorithm for Multiprocessors. In Proc.
of the 27th IEEE Real-Time Systems Symposium, pages 101–
110, Dec. 2006.

[5] H. Cho, B. Ravindran, and E. D. Jensen. Synchronization for
an Optimal Real-Time Scheduling Algorithm on Multiproces-
sors. In Proc. of the 2nd IEEE International Symposium on
Industrial Embedded Systems, pages 9–16, July 2007.

[6] P. Holman and J. H. Anderson. Adapting Pfair Scheduling for
Symmetric Multiprocessors. Journal of Embedded Comput-
ing, 1(4):543–564, May 2005.

[7] T. Matsui, H. Hirukawa, N. Yamasaki, H. Ishikawa,
S. Kagami, F. Kanehiro, H. Saito, and T. Inamura. Distributed
Real-Time Processing for Humanoid Robots. In Proc. of the
11th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, pages 205–210,
Aug. 2005.

[8] A. Srinvasan, P. Holman, and J. Anderson. Integrating Aperi-
odic and Recurrent Tasks on Fair-Scheduled Multiprocessors.
In Proc. of the 14th Euromicro Conference on Real-Time Sys-
tems, pages 19–28, June 2002.

[9] H.-W. Wei, Y.-H. Chao, S.-S. Lin, K.-J. Lin, and W.-K.
Shih. Current Results on EDZL Scheduling for Multiproces-
sor Real-Time Systems. In Proc. of the 13th IEEE Interna-
tional Conference on Embedded and Real-Time Computing
Systems and Applications, pages 21–24, Aug. 2007.

